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Abstract

Interpolation-based Language Models (LMs),
a type of retrieval-augmented LM, have shown
impressive decreases in perplexity and as a re-
sult, have been adapted to various downstream
tasks. Interpolation-based LMs interpolate the
next token probability distributions of a neural
LM and that of a datastore retriever to generate
text. Wang et al. (2023) claims that despite
these decreases in perplexity, interpolation-
based LMs like kNN-LM do not improve the
quality of open-ended text generation. They
hypothesize that the kNN-LM retriever intro-
duces exposure bias and impedes the LM’s self-
recovery abilities. In this paper, we reassess
these hypotheses. To do so, we utilize auto-
matic evaluation metrics to measure exposure
bias and self-recovery on several LMs and con-
figurations. Our findings are threefold: 1) The
kNN-LM retriever generally induces no major
differences in exposure bias and self-recovery
metrics. 2) A potential exception to this is when
the interpolation weight (λ) hyperparameter is
tuned solely to minimize perplexity. 3) All LMs
and configurations that we evaluate lack con-
sistent self-recovery abilities. Our work aims
to further inform evaluations of interpolation-
based LMs through these findings.

1 Introduction

Interpolation-based LMs such as kNN-LM (Khan-
delwal et al., 2020b) generate text by interpolating
a neural LM’s next token distribution with that
of a retriever to an external datastore and apply-
ing a decoding algorithm to the interpolated dis-
tribution (Wang et al., 2023). The addition of re-
trieval interpolation has demonstrated notable suc-
cess and popularity, with interpolated LMs show-
ing large decreases in perplexity compared to their
base LM counterparts without the need for any ad-
ditional training (Khandelwal et al., 2020b; Wang
et al., 2023; Min et al., 2023; Liu et al., 2024b;
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Geng et al., 2024). Consequently, interpolation-
based LMs have been adapted to many downstream
tasks (Khandelwal et al., 2020a; Shi et al., 2022;
Geng et al., 2024). However, the evaluation of
interpolation-based LMs for open-ended text gener-
ation has been relatively sparse. To our knowledge,
Wang et al. (2023) is the only work thus far to do
so extensively. The lack of evaluation and under-
standing of these LMs for this task is a particularly
pernicious issue, as recent interpolation-based LMs
such as Infini-gram (Liu et al., 2024b) achieve im-
pressive perplexity losses yet struggle with open-
ended text generation, with there being little to no
information as to why this issue occurs.

With this in mind, we turn towards Wang et al.
(2023), which presents two interlinked hypotheses
regarding this issue in the context of kNN-LM: 1)
The kNN-LM retriever introduces exposure bias. 2)
The introduction of exposure bias impedes the self-
recovery abilities of the base LM. We choose these
particular hypotheses as there are amble quantifica-
tion methods per He et al. (2021b) which were not
utilized in Wang et al. (2023)’s analysis, hence, a
deeper investigation may shine new light regarding
kNN-LM’s effect on open-ended text generation.
Yet before doing so, we first must disambiguate
the definitions of exposure bias and self-recovery.
During training time (under common MLE objec-
tives), an LM is trained on ground truth tokens, yet
at inference time can only rely on its own generated
prefixes. Exposure bias is the hypothesized issue
where this discrepancy leads to a significant im-
balance in training and inference performance, as
the LM is only trained to perform well on ground
truth prefixes (Ranzato et al., 2015; Bengio et al.,
2015; Schmidt, 2019; He et al., 2021b). This per-
formance drop is characterized by the incremental
accumulation of errors (e.g. hallucinations, de-
generative text) during inference time (Wang and
Sennrich, 2020; Chiang and Chen, 2021). Self-
recovery refers to the hypothesized ability of LMs
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to recover from distortions in its prefix by attending
to more recent contexts versus irrelevant long-range
contexts, acting as a counter to exposure bias (He
et al., 2021b; Wang et al., 2023).

Wang et al. (2023) posits two reasons why the de-
sign of kNN-LM leaves the underlying neural LM
particularly vulnerable to exposure bias. Firstly,
the kNN-LM retriever, being constructed from the
training set, may face challenges when processing
increasingly out-of-distribution input text during
inference. Secondly, the retriever may also over-
rely on neural LM generated queries containing
artifacts or further distributional differences at in-
ference time. Similarly, Wang et al. (2023) hypoth-
esizes that while a standard LM may overcome a
distorted prefix through self-recovery, the kNN-LM
retriever hinders this ability by retrieving tokens
similar to this distorted prefix, effectively worsen-
ing these distortions. Wang et al. (2023) supports
their hypotheses by demonstrating that the kNN-
LM retriever’s Shannon entropy (Shannon, 1948)
relative to the base LM increases as the token length
increases, indicating an incremental accumulation
of errors commonly associated with exposure bias.
This analysis focuses on the differences between
the neural LM and the kNN-LM retriever separately
as opposed to when they are interpolated together
and does not utilize metrics that were made specif-
ically to measure exposure bias and self-recovery
such as those used in He et al. (2021b).

Due to these limitations, we found it necessary to
re-evaluate Wang et al. (2023)’s hypotheses that the
kNN-LM retriever introduces exposure bias and im-
pedes an LM’s ability to self-recover. To quantify
exposure bias and self-recovery, we use the metrics
provided in He et al. (2021b). We evaluate a variety
of LMs, including the same GPT-2 model (Radford
et al., 2019; Alon et al., 2022) and kNN-LM imple-
mentation (Alon et al., 2022) utilized by Wang et al.
(2023) on the same Wikitext-103 dataset (Merity
et al., 2016) to investigate if the kNN-LM truly in-
troduces exposure bias and impedes self-recovery.
In our reassessment, we find the following:

1. The kNN-LM variants of LMs do not have
any major differences regarding performance
on exposure bias and self-recovery metrics
compared to their standard counterparts under
most circumstances.

2. A possible exception to this is if the interpola-
tion weight (λ) hyperparameter is tuned only
on the basis of minimizing perplexity.

3. All evaluated LMs, regardless of configura-
tion, lack consistent self-recovery abilities.

We believe these findings can guide future evalu-
ations of interpolation-based LMs, especially due
to shedding light on the significance of a common
interpolation hyperparameter (λ).

2 Related Work

2.1 Interpolation-Based LMs
While Wang et al. (2023) coined the term, to our
knowledge, interpolation-based LMs began as a
result of Grave et al. (2016)’s and Grave et al.
(2017)’s work, wherein a cache containing past
hidden representations was linearly interpolated
with a neural LM’s distribution. kNN-LM (Khan-
delwal et al., 2020b) utilized Grave et al. (2017)’s
concept of linear interpolation to interpolate a neu-
ral LM with a kNN datastore. TRIMEext (Zhong
et al., 2022) further expands on kNN-LM by utiliz-
ing in-batch memories during pretraining for the
base LM. NEST (Li et al., 2024) improves the in-
ference speed and fluency of kNN-LM through var-
ious techniques, including dynamic span selection
and speculative decoding. Infini-gram (Liu et al.,
2024b) combines a neural LM with a large datas-
tore of unbounded n-grams, achieving significant
perplexity reductions but faces challenges in open-
ended text generation. Our work evaluates kNN-
LM as a baseline, as these previous works (includ-
ing kNN-LM) utilize Grave et al. (2017)’s concept
of linear interpolation with an external datastore.

2.2 Evaluation & Analysis of kNN-LM
kNN-LM and its descendants remain popular as
interpolation-based LMs and have been adapted
to various downstream tasks. However, work
specifically dedicated to evaluating kNN-LM and
its behavior on these downstream tasks remains
sparse. Xu et al. (2023) evaluates as to why kNN-
LM decreases perplexity, noting the importance
of kNN-LM’s use of different input representa-
tions, approximate kNN search, and careful tun-
ing of the retriever distribution’s softmax temper-
ature. BehnamGhader et al. (2022) evaluates sev-
eral retrieval-augmented LMs (including kNN-LM)
to investigate the reasons for their strengths and
weaknesses in the task of reasoning, finding that
the kNN-LM’s retriever fails to retrieve statements
crucial for reasoning due to their dissimilarity to
kNN-LM’s queries. Similarly, Geng et al. (2024)
shows kNN-LM excels in memory-intensive tasks
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but struggles with reasoning tasks, even with per-
fect retrieval. In our work, we evaluate the kNN-
LM retriever’s effect on exposure bias and self-
recovery to identify if it is the reason for kNN-LM’s
failure to improve open-ended text generation per
Wang et al. (2023).

3 Background and Notations

Language Models Language models (LM)
gather the probability of the next token/word wt

based on the input sequence qt (i.e. the query vec-
tor, or otherwise the context) P (wt|qt) and apply
decoding methods such as greedy decoding or nu-
cleus sampling (Holtzman et al., 2019) to generate
text. The next token probability can also be rewrit-
ten as P (Wl+1| C,W1:l), where C is a prompt of
fixed size and Wi ∈ V is a discrete random vari-
able distributed across the vocabulary V . In other
words, W is a sentence in the Vocabulary V , W1:l

is a prefix, and Wl+1 is the next token. While
equivalent, the former notation is more general and
describes the base behavior of an LM in Wang et al.
(2023)’s definition of kNN-LM. The latter defini-
tion is used to measure exposure bias in related
metrics in He et al. (2021b)’s work, particularly
as the prefix W1:l can be either sampled from the
ground truth prefix distribution PD or model prefix
distribution PM . Note for brevity in notation, these
prefix distributions are often included in a prefix
distribution set such that PH ∈ {PM , PD}.

kNN-LM We closely follow Wang et al. (2023)’s
definition of kNN-LM with the addition of dis-
cussing the retriever’s softmax temperature. kNN-
LM (Khandelwal et al., 2020b) is an interpolation-
based LM that interpolates the next token prob-
ability distributions between a neural LM model
and a retriever to a kNN datastore. This datastore
holds token-level representations of a correspond-
ing dataset (in this work, the token-level training
set of Wikitext-103) through key-value pairs. Each
key is a vector ki representing the context (n − 1
preceding tokens) for each value vi which stores the
n-th word. During inference, the retriever’s next
token probability distribution PKNN (wt|qt) is cal-
culated by taking the distances of a query vector
qj and all the keys in the datastore k1, k2, . . . k|V |
by utilizing a distance function d(k, qj) (we use
Euclidean distance):

PKNN (wt|qt) ∝
∑

(ki,vi)

1wt=vi exp(−d(ki, qt))

(1)

Additionally, the uniformity of PKNN (wt|qt)
can be controlled by a tunable hyperparameter,
τKNN , otherwise known as the retriever’s softmax
temperature. After a softmax is applied to gather
PKNN (wt|qt), the model then interpolates it with
the base neural LM’s next token probability distri-
bution PLM (wt|qt) using a tunable hyperparameter
λ to control the relative weight between the two
distributions:

P
′
(wt|qt) = λPKNN (wt|qt)+(1−λ)PLM (wt|qt)

(2)
To generate text from the kNN-LM distribution

P
′
(wt|qt), one can apply a decoding method sim-

ilar to a standard LM, such as nucleus sampling
(Holtzman et al., 2019) or greedy decoding.

3.1 Exposure Bias Metrics
Exposure Bias Marginal (EB-M): EB-M quan-
tifies exposure bias by measuring the relative per-
formance gain in generated text quality when swap-
ping model prefixes for ground truth prefixes. Ex-
posure Bias Marginal (EB-M), like all exposure
bias and self-recovery metrics, originates from He
et al. (2021b). The generation process for EB-
M is defined in three steps: generations are pro-
duced by first gathering a prompt of fixed-size C
from the ground truth distribution PD. Then both
the ground truth and model prefixes are sampled
from PH( · | C), each being of length l (the pre-
fix size). Finally, the generations are created by
sampling Wl+1:l+lgen from PM ( · | C,W1:l), where
lgen is the length of generation. EB-M focuses on
the marginal distribution of Wl+1:l+lgen , denoted as

P
Wl+1:l+lgen

M |H . EB-M is defined as:

EB-M(M, l, fscore) =
fscore(P

Wl+1:l+lgen
M|D , P

Wl+1:l+lgen
D )

fscore(P
Wl+1:l+lgen
M|M , P

Wl+1:l+lgen
D )

.

(3)

Where fscore denotes a scoring function to mea-
sure the quality or diversity of the outputs given a
label. In theory, the quality/diversity of Wl+1:l+lgen

should improve when the prefix comes from PD

rather than PM , as measured by the above ratio.

Exposure Bias Conditional (EB-C): In our
work, EB-C measures the loss in generated text con-
sistency when swapping ground truth prefixes for
model prefixes. Exposure Bias Conditional (EB-C)
is a similar metric to EB-M, sharing many compo-
nents, such as fixed prompt and prefix, yet focuses
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on the generation of 1 token instead. This is to cur-
tail artificially induced exposure bias when scoring
generations, a problem that He et al. (2021b) notes
might affect EB-M. Before defining EB-C, He et al.
(2021b) first defines a metric called the Conditional
Generation Deviation (CGD) to measure the diver-
gence between PM and PD for Wl+1, acting as the
backbone of EB-C:

CGD(M |H(l), fdiv) =

E
C∼PD,W1:l∼PH (·|C)

[fdiv(PM (·|C,W1:l), PD(·|C,W1:l))].

(4)

Where fdiv is a divergence function between two
probability distributions P on the vocabulary V ,
defined as: fdiv : P × P → R≥0. Additionally, He
et al. (2021b) states: "Exposure bias should induce
a meaningful gap between CGD(M |M(l), fdiv)
and CGD(M |D(l), fdiv)". With this in mind, EB-
C is then defined as:

EB-C(M, l, fdiv) =
CGD(M |M(l),fdiv)
CGD(M |D(l),fdiv)

. (5)

It should be noted that this definition re-
quires inferring from the ground truth distribution
PD(·|C,W1:l) when W1:l comes from PM . We in-
stead use W1:l from PD in this case, as He et al.
(2021b)’s method of replacing PD with a fully
trained LM and PM with a "psuedo trained" LM
would be computationally prohibitive with one of
the LMs we used in our experiments- the 8B param-
eter Llama 3 (Dubey et al., 2024). As a result, we
use the definition of EB-C and its variants loosely.

3.2 Self Recovery Metrics
Exposure Bias Marginal (EB-Mgap) EB-Mgap

measures the LM’s ability to self-recover generated
text quality after distortions in its prefix. Specifi-
cally, we corrupt (randomize) a percentage of to-
kens in the ground truth prefix (PD) of length l to
induce this distortion and generate a fixed model
prefix of length lgap conditioned on the corrupted
prefix to allow the LM to attempt to recover. Then,
a generation of length lgen conditioned on a combi-
nation of the corrupted prefix and the model prefix
(or "gapped" tokens) is produced. Finally, this gen-
eration is compared against the generated tokens
conditioned on uncorrupted ground truth tokens of
length l + lgap. Formally, EB-Mgap is given as:

EB-Mgap(M(lgap)|Dcorrupt(l), fscore) =

fscore(P
Wl′+1:l′+lgen
M|D(l′) , P

Wl′+1:l′+lgen
D )

fscore(P
Wl′+1:l′+lgen
M|Dcorrupt(l)

, P
Wl′+1:l′+lgen
D )

,

(6)

Where l′ = l + lgap represents the combination
of the corrupted prefix length and the model pre-
fix/"gapped" tokens length. Unlike EB-M, we ex-
clude the prompt C for conditioning, hence the
scored generations (corrupted and non-corrupted)
are instead conditioned on the two following pre-
fixes respectively:

PM (·|W corrupt
1:l ,Wl+1:l+lgap), PD(·|W1:l,Wl+1:l+lgap) (7)

We specifically exclude C to be consistent with
He et al. (2021b)’s implementation of EB-Cgap,
where it is excluded for space. Our rationale is that
treating EB-Cgap and EB-Mgap differently (beyond
the differences of their original counterparts) may
produce discrepancies in their results and thus limit
their comparability.

Exposure Bias Conditional (EB-Cgap) EB-Cgap

measures an LM’s ability to self-recover generated
text consistency after distortions in its prefix. EB-
Cgap has many of the same modifications as EB-
Mgap. This includes the exclusion of the prompt,
and generation of "gap" tokens to measure self-
recovery, alongside the corruption of prefixes. Sim-
ilarly, the method of calculating CGD has changed
with the introduction of lgap:

CGDgap(M(lgap)|Dcorrupt(l)) =

E
W

corrupt
1:l

∼P
corrupt
D

,Wl+1:l+lgap∼PM (·|W corrupt
1:l

)

[fdiv(PM (·|W corrupt
1:l ,Wl+1:l+lgap), PD(·|W corrupt

1:l ,Wl+1:l+lgap))],
(8)

Likewise, it follows that the definition of EB-C
gap is altered from EB-C:

EB-Cgap(M(lgap)|Dcorrupt(l), fdiv) =

CGDgap(M(lgap)|Dcorrupt(l),fdiv)

CGDgap(M|D(l+lgap),fdiv)
.

(9)

4 Experimental Setup

Utilizing the previously defined exposure bias
and self-recovery metrics, we evaluate three dif-
ferent models and their various configurations:
GPT-2 (Radford et al., 2019; Alon et al., 2022),
Transformer-XL (Dai, 2019), and Llama 3 (Dubey
et al., 2024) on the test set of the Wikitext-103
dataset (Merity et al., 2016). Specifically, we use
GPT-2 MAUVE (Pillutla et al., 2021; Liu et al.,
2021; Pillutla et al., 2023) and BERTScore (Zhang
et al., 2019) as scoring and divergence functions
to do so. We aim to determine if the kNN-LM re-
triever introduces exposure bias and impedes self-
recovery in these models.
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4.1 Models and KNN-LM Hyperparameters
We utilize three models in our analysis: GPT-
2 (Radford et al., 2019; Alon et al., 2022),
Transformer-XL (Dai, 2019), and Llama 3 (Dubey
et al., 2024). We chose these models to investi-
gate if kNN-LM’s effects on exposure bias and
self-recovery are different across several factors,
such as parameter count and architecture. We
leveraged existing data stores where applicable,
creating custom datastores for Transformer XL
and Llama 3 out of necessity. For these created
datastores, we chose two sets of hyperparame-
ters: one based solely on minimizing perplexity,
and another based on historical best values in pre-
vious works. To validate hyperparameters, we
opted to follow a similar strategy to Geng et al.
(2024), where we performed a grid search for λ
and τKNN to minimize perplexity. Specifically,
we searched λ ∈ {0.1, 0.15, 0.2, 0.25, 0.3} and
τKNN ∈ {1, 3, 5, 7, 9, 10}. For alternate hyper-
parameters, we chose a λ defined in previous work
and still chose a τKNN based on perplexity due to
Xu et al. (2023) stressing the heavy importance of
a well-tuned retriever softmax temperature.

GPT-2 We utilize the finetuned 124M parameter
gpt2-finetuned-wikitext103 (Radford et al.,
2019; Alon et al., 2022) largely as it was the main
model utilized in Wang et al. (2023). For its kNN-
LM configuration, we utilize the datastore and hy-
perparameters as provided by Alon et al. (2022).
Specifically, we set λ to 0.25 and τKNN to 1. We
set k to 1024 for GPT-2’s kNN-LM variant.

Transformer-XL We utilize the 257M parame-
ter transfo-xl-wt103 (Dai, 2019) largely due to
sharing architectural similarities between the under-
lying models of the original kNN-LM implemen-
tation (Khandelwal et al., 2020b) and TRIMEext

(Zhong et al., 2022): the Adaptive Input Trans-
former (Baevski and Auli, 2018). Namely, the two
share an adaptive softmax and input representations
(Joulin et al., 2017; Baevski and Auli, 2018). In the
creation of the kNN-LM datastore for Transformer
XL, we set its recurrence parameter mem_len to
384, and during evaluation set it to 640. For hy-
perparameters, we set λ to 0.10 and τKNN to 10.
For its set of alternative hyperparameters, we set
λ to 0.25 and τKNN to 10 following Khandelwal
et al. (2020b). We set k to 1024 for all kNN-LM
variants.

Llama 3 We utilize the 8B parameter
Meta-Llama-3-8B (Dubey et al., 2024) for
its parameter size, alongside access to a scaled
datastore from Shi et al. (2022); Geng et al. (2024),
which allows us to observe if scaling the kNN-LM
datastore and model size affects exposure bias
and self-recovery. For hyperparameters, we set
λ to 0.3 and τKNN to 5. For its set of alternate
hyperparameters, we set λ to 0.1 and τKNN to 5
(incidentally the same as the extended datastore
hyperparameters), following Geng et al. (2024).
We set k to 2048 for all kNN-LM variants.

4.2 Exposure Bias and Self Recovery Metric
Settings

For all Exposure Bias and Self Recovery Metrics,
we set the prompt C and length lgen to 20, following
He et al. (2021b). Note that in EB-C and EB-Cgap,
lgen is always 1 following Sections 3.1 and 3.2. For
Exposure Bias related metrics, we use five different
prefix sizes: 20, 40, 60, 80, and 100. For self-
recovery metrics, we use the prefix sizes of 20, 60,
and 100 and gap sizes of 0 (or otherwise no gap),
30, and 60. Prefix and gap sizes were selected
based on those used in He et al. (2021b) or for
being within comparable ranges to said values. For
EB-Mgap and EB-Cgap, we set the corruption rate
to 30% following He et al. (2021b).

4.3 Dataset and Generation Details
Following Wang et al. (2023), we use the test set
of wikitext-103-raw-v1 (Merity et al., 2016) in
our evaluation. To accurately measure exposure
bias and self-recovery, we divided the dataset into
chunks, extracting the necessary components (e.g.
the prompt, ground truth prefix) from each. For
EB-M and EB-C, we split the dataset into chunks
of size C+l+lgen and further split each chunk by
using the first C+l tokens as a prefix for which the
model will create a continuation of lgen tokens. As
all of our metrics require reference text (i.e. the
ground truth data), we use the tokens proceeding
the prefix of length lgen in each chunk as the ref-
erences. EB-M gap and EB-C gap split the dataset
into chunks of size C+l+lgap+lgen, with the prefix
becoming l+lgap, as the prompt is excluded. We
keep the prompt in the split to attempt to accurately
mimic EB-M gap and EB-C gap as described in He
et al. (2021b). Due to the many combinations of
prefix size and gap size, we defer the total num-
ber of samples of each configuration to Appendix
C. Regardless of LM or configuration, any dataset
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split conforms to the minimum 1000 sample re-
quirement for GPT-2 MAUVE (Liu et al., 2021;
Pillutla et al., 2021, 2023), which is our choice
for a fscore function. For decoding text, we largely
follow Wang et al. (2023), using nucleus sampling
where p = 0.8 as the primary method to generate
text. We also investigate other decoding methods
used by both He et al. (2021b) and Wang et al.
(2023) in Appendix D.

4.4 Choice of Scoring and Divergence
Functions

To measure generated text quality, EB-M and EB-
Mgap require a choice of corresponding scoring
function fscore, and similarly, EB-C and EB-Cgap

require a corresponding divergence function fdiv
to measure generated text consistency. Since these
metrics highly rely on their respective functions to
do so on relatively short generations (1 or 20 to-
kens), we carefully chose the following functions:

GPT-2 MAUVE GPT-2 MAUVE (Pillutla et al.,
2021; Liu et al., 2021; Pillutla et al., 2023) is an
open-ended text generation metric which uses the
embeddings of the 774M parameter gpt2-large
model (Radford et al., 2019) to calculate the sim-
ilarity between neural and human text via Kull-
back–Leibler Divergences. Its high levels of cor-
relation with human judgment, alongside its exten-
sive use as an open-ended text generation metric in
Wang et al. (2023)’s work make it an ideal candi-
date for an fdiv function.

BERTScore-F1 BERTScore (Zhang et al., 2019)
is a text generation metric that utilizes BERT (De-
vlin, 2018) embeddings and cosine similarity to
compute the precision, recall, and F1 score between
a neural and human text. It correlates higher with
human judgment than BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004), which measure n-gram
precision and recall between neural and human
texts. He et al. (2021b) previously used BLEU a an
fscore. As BERTScore improves upon a prior fscore,
we chose BERTScore-F1 as an fscore function. We
use the 750M parameter deberta-xlarge-mnli
(He et al., 2021a) model as the BERTScore evalua-
tor, as recommended by the authors1.

5 Results

Despite the hypotheses made in Wang et al. (2023),
we find that the kNN-LM retriever does not appear

1https://github.com/Tiiiger/bert_score

to introduce exposure bias nor impede an LM’s abil-
ity to self-recover in most cases. However, we find
a potential exception to these results: when the in-
terpolation weight (λ) hyperparameter is tuned only
to minimize perplexity, specifically when adding
kNN-LM to Llama 3. We also find that all evalu-
ated LMs, regardless of configuration, cannot self-
recover consistently. We present our results in tabu-
lar form in Appendix A and an extended evaluation
for further verification of results in Appendix D.

5.1 Exposure Bias Metrics
No Major Changes in Exposure Bias for Most
kNN-LM Configurations As shown in Figure
1, there appears to be no major difference in the
amount of exposure bias between interpolated and
non-interpolated configurations for most models.
While there are some points in which the kNN-
LM variants may have a higher disparity, such as
for the prefix sizes of 60 in Subfigure 1d and 40
in Subfigure 1e, this is not consistent trend-wise.
On the contrary, we even see the Transformer-
XL kNN-LM variant with alternate hyperparam-
eters(trfxl+knn+alt) consistently outperformed the
base LM (trfxl) to a minor degree in Subfigure 1b.

Tuning the Interpolation Weight (λ) Hyper-
parameter Solely to Minimize Perplexity Can
Introduce Exposure Bias In both Subfigures
1c and 1f, we see that under the Llama kNN-
LM configuration tuned solely for perplexity
(llama3+knnlm) the disparities in quality and con-
sistency greatly increased as the prefix size in-
creased, indicating increased amounts of exposure
bias. At a prefix size of 100, we see this config-
uration has a ~10% increase in BERTScore dis-
parity and a ~12% increase in disparity for GPT-2
MAUVE compared to its non kNN-LM counter-
part (llama3). This is also complemented by a
much less severe case: in both Subfigures 1b and
1e, the alternate hyperparameter variant of kNN-
LM (trfxl+knnlm+alt) tends to outperform its non-
alternate counterpart (trfxl+knnlm), but does not
necessarily worse than the stock LM (trfxl). This
suggests that tuning λ may be especially crucial for
KNN-LM’s performance, as similarly theorized in
Wang et al. (2023).

5.2 Self Recovery Metrics
All LMs and Configurations Lack Consistent
Self-Recovery Abilities Figure 2 demonstrates
evaluated LMs’ lack of consistent self-recovery
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Figure 1: EBM/EBC Ratios for several LM configurations detailing the disparities (exposure bias) in quality (via
BERTScore) and consistency (via GPT-2 MAUVE) between generated text conditioned on model and ground truth
prefixes of increasing size. Additional configurations include alternate choices for the kNN-LM interpolation weight
hyperparameter or an extended datastore. A ratio farther from 1 indicates more discrepancy, i.e. exposure bias,
regardless of the exact ratio value. In theory, all of the kNN-LM variants should see increased exposure bias
compared to their standard LM counterparts. Yet in practice, they typically exhibit equal or lower levels of exposure
bias (llama3+knnlm being the major exception).

abilities across all subfigures. Any supposed re-
covery with smaller prefix sizes begins to diminish
with larger prefix sizes or simply does not occur
at all. We see that in Subfigure 2f that the non
kNN-LM variant of Llama 3 (llama3) can recover
under a prefix of size 20, it cannot do so for a prefix
size of 60 and 100, as initial gains in ratios begin to
subside with a larger gap size. Worse, Subfigures
2a, 2b, and 2c see sharp disparity increases with no
sort of improvement in sight.

kNN-LM Generally Induces No Major Changes
to Self-Recovery Disparities Despite lacking
self-recovery abilities, the evaluated LMs gener-
ally show no major changes regarding self-recovery
disparities in their kNN-LM variants. Interestingly,
these results are similar to those seen in Section 5.1.
For example, the alternate kNN-LM hyperparam-
eter variant (trfxl+knnlm+alt) of Transformer-XL
still has consistent levels of reducing disparities in
Subfigure 2b. Similarly, the Llama 3 kNN-LM vari-
ant (llama3+knnlm) is still an exception, greatly
hampering performance relative to its standard LM
counterpart (llama) in Subfigures 2c and 2f. How-
ever, the disparities in this exception are far worse:
when the prefix size is 100, the difference in dispar-
ity ratios can reach as high as ~30%. We believe

the reason for this is the same: the choice of a λ
based on the minimization of perplexity alone.

6 Discussion

In this section, we briefly speculate the reasons
for our findings and their potential implications for
future work regarding interpolation-based LMs.

6.1 Why Does The Interpolation Weight (λ)
Hyperparameter Influence Exposure Bias
and Self-Recovery so Heavily?

Coincidentally, we do not have to look far for a
potential answer. Wang et al. (2023) claims that
a λ tuned for perplexity may not produce the best
MAUVE values. We agree, as our results showed
that a λ tuned solely for perplexity consistently
performed worse than its alternative hyperparam-
eters. Digging deeper, we hypothesize this is due
to perplexity’s weakness: perplexity values tend to
get lower with more repetitive tokens (Wang et al.,
2022). Our rationale for this hypothesis is based
on two previous findings: that kNN-LM only bene-
fits a subset of tokens (Wang et al., 2023) and that
kNN-LM tends to retrieve high-frequency entities
(Geng et al., 2024). Since perplexity is potentially
lowered due to the repetition of tokens (Wang et al.,
2022), we hypothesize that tuning λ for perplex-
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Figure 2: EBC/EBM (GAP) ratios for various LM configurations detailing the disparities in quality (via BERTScore)
and consistency (via GPT-2 MAUVE) between generated text conditioned a ground truth prefix and its 30%
corrupted version. Additional configurations include alternate choices for the kNN-LM interpolation weight
hyperparameter or an extended datastore. Given an increasing model prefix of size “gap”, the model should, in
theory, “self-recover” by bringing the ratio closer to 1, indicating no discrepancy, regardless of the exact ratio
value. Similarly, all kNN-LM configurations should in theory hamper this ability compared to their standard LM
counterparts. In practice, no LM appears to be able to “self-recover” consistently. Yet, despite this, the kNN-LM
variants generally perform similarly to their standard counterparts (with llama3+knnlm being the major exception).

ity alone can exacerbate kNN-LM’s bias towards
a minority of frequent tokens, leading to a cascad-
ing effect. We also discuss some early evidence to
support this hypothesis in Appendix B.

6.2 Do LMs Lack Self-Recovery?
We believe this question lacks a definitive answer,
as to our knowledge, only one method to quan-
tify self-recovery exists in the form of He et al.
(2021b)’s metrics. However, we can turn towards
a related concept for closed-end tasks in the form
of self-correction, where models revise responses
through intrinsic refinement or external feedback.
Whether language models (LMs) possess this abil-
ity is still debated (Huang et al., 2023; Liu et al.,
2024a; Kamoi et al., 2024; Wu et al., 2024; Zhang
et al., 2024b). Given doubts about self-correction,
which requires explicit feedback, we also question
whether LMs can self-recover since self-recovery
theoretically occurs without explicit feedback. If

LMs cannot self-recover, then Wang et al. 2023’s
hypothesis that the kNN-LM retriever impedes this
ability may rest on a false assumption. However,
with only one definition of self-recovery, further
evaluation is needed to confirm if this is the case.

7 Conclusion

In this work, we explored whether the kNN-LM
retriever introduces exposure bias and impedes
self-recovery in various LMs and configurations.
Our findings are threefold: 1) The kNN-LM re-
triever generally does not introduce major differ-
ences regarding exposure bias and self-recovery.
2) A possible exception to this is when the inter-
polation weight (λ) hyperparameter of kNN-LM
is tuned solely to minimize perplexity. 3) All
LMs and configurations tested appear to lack con-
sistent self-recovery abilities. We anticipate that
our results will contribute to further evaluation of
interpolation-based LMs.
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8 Limitations

Our work only uses Alon et al. (2022)’s implemen-
tation of kNN-LM due to compatibility issues with
other implementations. Specifically, both Khandel-
wal et al. (2020b) and Zhong et al. (2022) utilize
forks of fairseq23 for their implementations, which
lack support for larger and more recent LMs such
as Llama 3 (Dubey et al., 2024) (which was used
in our evaluation). Additionally, although fairseq’s
successor, fairseq v2, supports Llama 3, it lacks
backward compatibility4, which makes porting the
other implementations of kNN-LM infeasible.

This work also does not conduct a human eval-
uation due to the high costs associated with con-
ducting an evaluation to the same scale as He et al.
(2021b). While exposure bias has typically been
studied quantitatively as: "It would be difficult
to judge whether the distortions are incremental
via qualitative examination" (He et al., 2021b), fu-
ture work can potentially use qualitative human
evaluation as a means of verifying quantitative re-
sults regarding whether the kNN-LM or similar (i.e.
interpolation-based) retrievers introduce exposure
bias.
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A Results In Tabular Form

EB-M / EB-C
prefix length (l)

20 40 60 80 100
EB-M (Mgpt2, BERTScore-F1) 1.0951 1.1114 1.12 1.1225 1.134

EB-M (Mgpt2+knnlm, BERTScore-F1) 1.0901 1.1119 1.119 1.1241 1.1325
EB-C (Mgpt2, GPT-2 MAUVE) 0.9595 0.9628 0.9634 0.9469 0.9646

EB-C (Mgpt2+knnlm, GPT-2 MAUVE) 0.9783 0.9693 0.9471 0.9694 0.9637

EB-M (Mtrfxl, BERTScore-F1) 1.0786 1.0999 1.1074 1.1052 1.1156
EB-M (Mtrfxl+knnlm, BERTScore-F1) 1.073 1.0936 1.0971 1.1065 1.1085

EB-M (Mtrfxl+knnlm+alt, BERTScore-F1) 1.0598 1.0719 1.0792 1.0805 1.0808
EB-C (Mtrfxl, GPT-2 MAUVE) 0.9405 0.9344 0.9261 0.901 0.9093

EB-C (Mtrfxl+knnlm, GPT-2 MAUVE) 0.9432 0.8849 0.9362 0.9038 0.9423
EB-C (Mtrfxl+knnlm+alt, GPT-2 MAUVE) 0.9565 0.9486 0.9319 0.9154 0.9782

EB-M (Mllama3, BERTScore-F1) 1.1382 1.1639 1.1811 1.1936 1.1987
EB-M (Mllama3+knnlm, BERTScore-F1) 1.1628 1.2111 1.2446 1.2857 1.3062

EB-M (Mllama3+knnlm+alt, BERTScore-F1) 1.145 1.1733 1.1886 1.2084 1.2108
EB-M (Mllama3+knnlm+ext, BERTScore-F1) 1.1419 1.1701 1.1818 1.2066 1.1995

EB-C (Mllama3, GPT-2 MAUVE) 0.9617 0.9423 0.9258 0.9373 0.935
EB-C (Mllama3+knnlm, GPT-2 MAUVE) 0.8929 0.8822 0.8396 0.8101 0.8209

EB-C (Mllama3+knnlm+alt, GPT-2 MAUVE) 0.9567 0.9242 0.9085 0.9089 0.9344
EB-C (Mllama3+knnlm+ext, GPT-2 MAUVE) 0.9149 0.9141 0.9446 0.9141 0.8914

Table 1: The tabular data of EBM/EBC Ratios for the various LMs and their configurations detailing the disparities
(exposure bias) in quality (via BERTScore) and consistency (via GPT-2 MAUVE) between generated text conditioned
on model and ground truth prefixes of increasing size. Additional configurations include an alternate choice for the
kNN-LM interpolation weight hyperparameter or an extended datastore. A ratio farther from 1 indicates more
discrepancy, i.e. exposure bias, regardless of the exact ratio value. In theory, all of the kNN-LM variants should
see increased exposure bias compared to their standard LM counterparts. Yet in practice, they generally exhibit
equal or lower levels of exposure bias (with llama3+knnlm being the exception). This table’s results are equivalent
to Figure 1. The design was largely borrowed from He et al. (2021b) for the sake of consistency.
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EB-Mgap / EB-Cgap

gap length (lgap)
0 30 60

EB-Mgap (Mgpt2+20, BERTScore-F1) 1.0888 1.141 1.1541
EB-Mgap (Mgpt2+knnlm+20, BERTScore-F1) 1.0815 1.1361 1.1384

EB-Cgap (Mgpt2+20, GPT-2 MAUVE) 0.9454 0.9517 0.9647
EB-Cgap (Mgpt2+knnlm+20, GPT-2 MAUVE) 0.9433 0.9583 0.9538

EB-Mgap (Mgpt2+60, BERTScore-F1) 1.1189 1.1577 1.153
EB-Mgap (Mgpt2+knnlm+60, BERTScore-F1) 1.1121 1.1519 1.1476

EB-Cgap (Mgpt2+60, GPT-2 MAUVE) 0.9431 0.9622 0.9681
EB-Cgap (Mgpt2+knnlm+60, GPT-2 MAUVE) 0.9553 0.9643 0.9735

EB-Mgap (Mgpt2+100, BERTScore-F1) 1.1426 1.1614 1.1786
EB-Mgap (Mgpt2+knnlm+100, BERTScore-F1) 1.1279 1.152 1.1684

EB-Cgap (Mgpt2+100, GPT-2 MAUVE) 0.9469 0.9495 0.9551
EB-Cgap (Mgpt2+knnlm+100, GPT-2 MAUVE) 0.9658 0.9293 0.9559

EB-Mgap (Mtrfxl+20, BERTScore-F1) 1.0483 1.1152 1.1287
EB-Mgap (Mtrfxl+knnlm+20, BERTScore-F1) 1.0442 1.1046 1.1167

EB-Mgap (Mtrfxl+knnlm+alt+20, BERTScore-F1) 1.0358 1.0758 1.0885
EB-Cgap (Mtrfxl+20, GPT-2 MAUVE) 0.9203 0.9513 0.915

EB-Cgap (Mtrfxl+knnlm+20, GPT-2 MAUVE) 0.9318 0.9527 0.8876
EB-Cgap (Mtrfxl+knnlm+alt+20, GPT-2 MAUVE) 0.9362 0.9585 0.9306

EB-Mgap (Mtrfxl+60, BERTScore-F1) 1.0607 1.1029 1.1085
EB-Mgap (Mtrfxl+knnlm+60, BERTScore-F1) 1.0582 1.091 1.1005

EB-Mgap (Mtrfxl+knnlm+alt+60, BERTScore-F1) 1.0496 1.0794 1.0812
EB-Cgap (Mtrfxl+60, GPT-2 MAUVE) 0.9308 0.9187 0.9191

EB-Cgap (Mtrfxl+knnlm+60, GPT-2 MAUVE) 0.9294 0.9243 0.9431
EB-Cgap (Mtrfxl+knnlm+alt+60, GPT-2 MAUVE) 0.9717 0.9256 0.9488

EB-Mgap (Mtrfxl+100, BERTScore-F1) 1.065 1.0965 1.1039
EB-Mgap (Mtrfxl+knnlm+100, BERTScore-F1) 1.0633 1.0992 1.0973

EB-Mgap (Mtrfxl+knnlm+alt+100, BERTScore-F1) 1.0463 1.0747 1.079
EB-Cgap (Mtrfxl+100, GPT-2 MAUVE) 0.9241 0.9305 0.961

EB-Cgap (Mtrfxl+knnlm+100, GPT-2 MAUVE) 0.9406 0.9846 0.9471
EB-Cgap (Mtrfxl+knnlm+alt+100, GPT-2 MAUVE) 0.9588 0.9518 0.9753

EB-Mgap (Mllama3+20, BERTScore-F1) 1.1724 1.2981 1.3402
EB-Mgap (Mllama3+knnlm+20, BERTScore-F1) 1.1812 1.3847 1.4506

EB-Mgap (Mllama3+knnlm+alt+20, BERTScore-F1) 1.1783 1.3127 1.362
EB-Mgap (Mllama3+knnlm+ext+20, BERTScore-F1) 1.1599 1.3063 1.3373

EB-Cgap (Mllama3+20, GPT-2 MAUVE) 0.6571 0.8283 0.8428
EB-Cgap (Mllama3+knnlm+20, GPT-2 MAUVE) 0.6885 0.6452 0.5907

EB-Cgap (Mllama3+knnlm+alt+20, GPT-2 MAUVE) 0.7075 0.7864 0.7677
EB-Cgap (Mllama3+knnlm+ext+20, GPT-2 MAUVE) 0.6975 0.7799 0.8387

EB-Mgap (Mllama3+60, BERTScore-F1) 1.135 1.2508 1.2646
EB-Mgap (Mllama3+knnlm+60, BERTScore-F1) 1.1644 1.3406 1.421

EB-Mgap (Mllama3+knnlm+alt+60, BERTScore-F1) 1.1358 1.2712 1.3076
EB-Mgap (Mllama3+knnlm+ext+60, BERTScore-F1) 1.1352 1.2546 1.2953

EB-Cgap (Mllama3+60, GPT-2 MAUVE) 0.7782 0.8634 0.8443
EB-Cgap (Mllama3+knnlm+60, GPT-2 MAUVE) 0.7971 0.6785 0.5459

EB-Cgap (Mllama3+knnlm+alt+60, GPT-2 MAUVE) 0.783 0.7847 0.822
EB-Cgap (Mllama3+knnlm+ext+60, GPT-2 MAUVE) 0.7887 0.839 0.8549

EB-Mgap (Mllama3+100, BERTScore-F1) 1.1165 1.2505 1.2835
EB-Mgap (Mllama3+knnlm+100, BERTScore-F1) 1.1414 1.3377 1.4195

EB-Mgap (Mllama3+knnlm+alt+100, BERTScore-F1) 1.1198 1.2625 1.3101
EB-Mgap (Mllama3+knnlm+ext+100, BERTScore-F1) 1.1094 1.2553 1.2926

EB-Cgap (Mllama3+100, GPT-2 MAUVE) 0.7835 0.8865 0.8478
EB-Cgap (Mllama3+knnlm+100, GPT-2 MAUVE) 0.8228 0.6859 0.5595

EB-Cgap (Mllama3+knnlm+alt+100, GPT-2 MAUVE) 0.7986 0.8006 0.8255
EB-Cgap (Mllama3+knnlm+ext+100, GPT-2 MAUVE) 0.8628 0.8902 0.8124

Table 2: The tabular data of EBC/EBM (GAP) ratios for various LM configurations detailing the disparities in
quality (via BERTScore) and consistency (via GPT-2 MAUVE) between generated text conditioned a ground
truth prefix and its 30% corrupted version. Given an increasing model prefix of size “gap”, the model should,
in theory, “self-recover” by bringing the ratio closer to 1, indicating no discrepancy, regardless of the exact
ratio value. Similarly, all kNN-LM configurations should in theory hamper this ability compared to their standard
LM counterparts. In practice, no LM appears to be able to “self-recover” consistently, and kNN-LM variants still
generally perform similarly to their standard counterparts (with llama3+knnlm being the exception). This table’s
results are equivalent to Figure 2. The design was modified from He et al. (2021b)’s original EBC/EBM table.
Numbers after the configuration name are the prefix size, (e.g. gpt2+20 has a prefix size of 20).
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Figure 3: EBC/EBM and EBC/EBM (GAP) ratios for various LM configurations detailing the disparities in diversity
(given SeqRep-2) for generations created with greedy decoding, each pair of ratios measuring exposure bias and
self-recovery respectively. In theory, if kNN-LM has a bias towards a minority of frequent tokens, the most obvious
sign would be major differences in the repetition ratios. While our self-recovery metrics appear somewhat the
same, the exposure bias metrics indicate an increase in diversity disparities, particularly in the poorly performing
configuration, llama3+knnlm. This may suggest that while repetition may be an important factor in diagnosing
kNN-LM’s bias toward frequent tokens, more work is needed to verify this hypothesis. More detailed information
about SeqRep-2 is found in Appendix D.1, and as SeqRep-2 does not need labels, it has alternate ratio definitions
found in Appendix D.2.

B Is the kNN-LM Retriever Biased
Towards a Minority of Frequent
Tokens?

In this section, we go over early evidence that we
believe supports our hypothesis that the kNN-LM
retriever may be biased towards a frequent minority
of tokens. The most surface-level reason for this
would be an increase in disparities relating to lexi-
cal diversity. Hence, we utilize SeqRep-2 (Welleck
et al., 2019; Fu et al., 2021; Li et al., 2023a) as
an fscore to measure whether or not this is the case.
SeqRep-2 does so by calculating the bigram rep-
etition of a given generation. We utilize greedy
decoding in our investigation as it falls victim to
neural text degeneration (Holtzman et al., 2019),
and hence is where repetition likely would be the
most observable.

Our results are somewhat surprising: Subfigures
3a and 3b only show minor disparities in diversity,
yet Subfigure 3c shows a high level of disparity as-
sociated with the poorly performing configuration
(llama3+knnlm). This might be bizarre, given that

Wang et al. (2023)’s results generally showed the
kNN-LM retrievers tend to induce more lexical di-
versity. We suspect that our hypothesis still stands
for one main reason: 1) that the frequency bias is
largely influenced by hyperparameter tuning. The
only configuration marked by great disparities in di-
versity is the one in which its interpolation weight
(λ) is tuned solely for perplexity. Hence, the issue
can potentially be avoided entirely when careful
hyperparameter tuning is paired with stochastic
sampling methods such as nucleus or top-k sam-
pling. We recommend the latter to avoid neural text
degeneration and poor open-ended text generation
performance (Shi et al., 2024).

However, we should warn that we believe this
hypothesis is not the only factor to consider: the
difference in repetition disparities is much smaller
in Subfigures 3d, 3e, 3f. This suggests that there
are more factors involved in this bias than simply
repetitive text, and we encourage future work to
look towards this direction.
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Prefix Size GPT-2 Trf-XL Llama 3
20 8840 4147 4886
40 6626 3109 3665
60 5302 2487 2930
80 4418 2072 2441
100 3786 1776 2092

Table 3: Sample Sizes for EB-M and EB-C

C Additional Evaluation Information

This section largely covers additional evaluation in-
formation in the form of sample sizes for evaluation
and computational resources.

Computational Resources The creation of the
datastores and experiments of this work was com-
pleted on a local machine with a single RTX 4090
GPU alongside an i7-14700k processor, supple-
mented with 96 GB of CPU RAM (we note that
less than 64 GB of RAM were occupied for the
experiments and datastore creation). The datastore
creation and evaluations took approximately 182
hours to complete with significant usage of both the
GPU and CPU. The creation of the Transformer-XL
datastore took approximately 27 hours to complete
and the creation of the Llama-3 datastore took ap-
proximately 35 hours to complete. The evaluation
took a total of approximately 120 hours. Because of
the extended duration of the evaluation, all reported
results are from a single run. For development, we
estimate that the total active hardware hours would
amount to 2-3 months.

We estimate that approximately 150 GB of stor-
age space was needed during the evaluation to store
the datastore indices and models. However, since
the datastore’s keys needed to be saved onto the
disk before the creation of a FAISS (Johnson et al.,
2019) index, approximately 1.2 TB of solid-state
storage were needed, with Llama 3’s keys requiring
991 GB and Transformer-XL’s keys requiring 212
GB. Llama 3 particularly required larger storage
due to its embedding dimension of 4096 (as op-
posed to Transformer-XL’s 1024), as the required
storage size scales with an LM’s embedding di-
mension. Another factor that can impact required
storage size is how the LM tokenizes the dataset,
as some LMs generate more tokens for a text of the
same length (see sample sizes for an example).

Sample Sizes This page contains the respec-
tive sample sizes for each exposure bias and self-
recovery metric. We see that all prefix and gap

Prefix Size Gap Size GPT-2 Trf-XL Llama 3
20 0 8840 4147 4886
20 30 5892 2763 3256
20 60 4418 2072 2441
60 0 5302 2487 2930
60 30 4077 1913 2254
60 60 3311 1553 1831
100 0 3786 1776 2092
100 30 3116 1462 1723
100 60 2649 1242 1464

Table 4: Sample Sizes for EB-Mgap and EB-Cgap

sizes conform to the 1000 sample size requirement
of the MAUVE divergence function (Pillutla et al.,
2023).
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D Extended Evaluation

This section covers the extended evaluation of this
work, taking into account far more scoring and
divergence functions. We found that overwhelm-
ingly, these alternate scoring and divergence
functions supported our claims. While there
were some exceptions within certain divergence
functions, we found that these did not occur con-
sistently. For example, while we find Subfigures
6m and 9n to be a potential indication of kNN-
LM variants introducing exposure bias/ imped-
ing self-recovery for the RankGen (Krishna et al.,
2022) divergence/similarity function, this behavior
is quickly proven inconsistent by Subfigures 8m,
7n, 5n, and 4m, where this negative trend either
does not appear consistently or at all.

Decoding Algorithms In our extended analy-
sis, we also evaluated three other decoding algo-
rithms aside from nucleus sampling (Holtzman
et al., 2019): greedy decoding, top-k (where k=40)
(Fan et al., 2018; Holtzman et al., 2018; Radford
et al., 2019) sampling, and ancestral(pure) sam-
pling. Ancestral sampling was specifically studied
per the recommendation of He et al. (2021b) to
measure exposure bias. However, as nearly all de-
coding algorithms supported our results, we chose
to only report nucleus sampling in our extended
results and greedy decoding to study kNN-LM’s
effects on repetition in Appendix B for the sake of
space.

Regarding Similarity Functions Two alternate
divergence functions, RankGen (Krishna et al.,
2022) and GTE-Similarity5 (Li et al., 2023b) are
similarity functions as opposed to divergence func-
tions. To accommodate these two functions, we
loosen our definition of fdiv to include similarity
functions in this analysis.

D.1 Alternate Scoring and Divergence
Functions

This section is dedicated towards explaining the
additional scoring and divergence functions we uti-
lized, their motivations, and potential edge cases in
which we observed the functions became unstable.
All functions that are considered potentially unsta-
ble (although not always) are listed with a *. Some
alternate scoring and divergence functions require

5GTE-Similarity was created in Appendix D.1, using
gte-large-en-v1.5 (Li et al., 2023b) as the embedding
model.

modified definitions for them to be suitable in our
evaluations, and we defer these to Appendix D.2.

Alternate Divergence/Similarity Functions

GTE-Similarity MAUVE has the issue that it
requires at least 256 tokens to determine the differ-
ences between two texts confidently (Pillutla et al.,
2023). As we are limited to single token gener-
ations in our consistency metrics, we developed
a metric to create a second opinion for MAUVE:
GTE Similarity. Functionally, GTE-Similarity is
simply the cosine similarity between each predic-
tion and labels utilizing the gte-large-en-v1.5
model as the means to encode the predictions and
the labels (Li et al., 2023b; Zhang et al., 2024a). We
chose gte-large-en-v1.5 model for its high per-
formance on the Massive Text Embedding Bench-
mark (MTEB) (Muennighoff et al., 2022) and its
low parameter count (434M), allowing for quick
evaluation. At the time of writing, it is currently
ranked 22nd on the MTEB Leaderboard6. GTE
Similarity is calculated by taking the inputs of the
encoded generation and label vectors (Vg, Vl), and
computing the cosine similarity between them:

GTE Similarity(Vg, Vl) =
Vg · Vl

|Vg||Vl|
(10)

It should also be noted that because this simi-
larity function is highly derivative, it also likely
shares the same limitations and biases as cosine
similarity and gte-large-en-v1.5. Namely, the
largest of these is that cosine similarity does not
account for the magnitude of the encoded vec-
tors due to normalization in its equation, mean-
ing certain differences in embeddings may not be
potentially detected as a result. While we were
not able to find any biases specifically related to
gte-large-en-v1.5, it likely shares many limita-
tions common to embedding models such as being
limited to grammatical errors and lack of context
(Harris et al., 2024). Due to this, we recommend
only interpreting GTE Similarity’s results in tan-
dem with other divergence/similarity functions.

MAUVE Variants In particular, MAUVE uti-
lizes the embeddings of the 774M parameter GPT-2
Large to rate the consistency between two given
texts. However, the GPT-2 variant of this diver-
gence function has several flaws, such as ignoring
errors in the beginning and middle of text (He et al.,
2023). This is particularly concerning as EB-C

6https://huggingface.co/spaces/mteb/leaderboard
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and EB-Cgap score single token generations, mean-
ing the token is both the beginning, middle, and
end. Hence, we also employ MAUVE variants such
as RoBERTa MAUVE (Conneau et al., 2019; Liu
et al., 2020; Pillutla et al., 2021; He et al., 2023),
and ELECTRA MAUVE (Clark et al., 2020; He
et al., 2021b), which do not have this weakness
and correlate more with human judgment. For cal-
culating both MAUVE variants, we use the 561M
parameter xlm-roberta-large, and the 335M pa-
rameter electra-large-discriminator respec-
tively. It should be noted that these come with their
caveats, such as RoBERTa MAUVE heavily penal-
izing smaller models such as the 117M parameter
gpt-2 LM score-wise (Pillutla et al., 2021), and
ELECTRA MAUVE penalizing minor erroneous
output harshly (He et al., 2023).

RankGen RankGen (Krishna et al., 2022) is a
similarity function utilized to score the relevance
of a model’s generated text (suffix) and its prompt
(prefix) utilizing the dot product- a higher RankGen
score indicates a higher relevancy. As RankGen
uses the dot product, we take the mean of the diag-
onal of the dot product as the RankGen score so as
only to score the relevance of a prediction with its
corresponding label. We implement this metric as
it was used extensively in Wang et al. (2023). We
also considered utilizing RankGen potentially as a
scoring function instead due to its divergence vari-
ant comparing 1 token against a 20 token prompt,
which theoretically may have caused issues. In
practice, it performed similarly to its divergence
counterpart, hence we decided against utilizing it
further.

Alternate Scoring Functions

BERTScore Precision/Recall He et al. (2023)
states that BERTScore Precision and BERTScore
F1 can be potentially thrown off by truncations in
an LM’s labels, with BERTScore Recall being the
only BERTScore variant not afflicted. Hence, we
report all three variants of BERTScore.

Entity F1 Wang et al. (2023) largely uses En-
tity F1 (Derczynski, 2016; Nan et al., 2021; Lee
et al., 2022) as a means to evaluate the rate of hallu-
cinated entities in a text and by proxy, the potential
general rate of hallucination. A higher Entity F1
score would indicate less of these hallucinations.
However, as our evaluations deal with short genera-
tions (20 tokens) as opposed to Wang et al. (2023)’s
large generations (256 tokens), we felt the need to

acclimatize Entity F1 accordingly due to this con-
straint. Hence, rather than taking the mean Entity
F1 between all label and prediction pairs, we take
the Entity F1 between the entirety of the labels
and predictions, as otherwise, we believe the func-
tion would be largely unstable. In our scoring, we
only consider exact matches and remove repeated
entities for simplicity.

GPT-2 Perplexity* Wang et al. (2023) previ-
ously used GPT-3 Perplexity (Brown et al., 2020)
as a quality measure. Specifically, they used the
6.7B parameter model gpt3-curie to do so. Be-
cause the model used to gather GPT-3 perplexity,
was shut down7, we instead use the 774M param-
eter gpt2-large (Radford et al., 2019) as a re-
placement to score perplexity. We take the mean
perplexity of all the generated outputs.

Unfortunately, for many reasons, GPT-2 Perplex-
ity remains unstable. This is largely because of the
design of exposure bias and self-recovery. Namely,
we found that perplexity will always prefer genera-
tions built on a model prefix in our exposure bias
evaluations. Similarly, GPT-2 perplexity tends to
skyrocket as a result of our corrupted prefix in our
self-recovery evaluations. We largely kept GPT-2
Perplexity in our results as some interesting phe-
nomena occurred. For example, in Subfigure 9i,
the base model and the kNN-LM variant with an
extended datastore appear to have an extremely low
ratio (caused by an abnormally high corrupted pre-
fix perplexity), while the other variants able to be
stable. While we believe this is coincidental, we
chose to report the results due to their abnormality.

SeqRep1-4* Wang et al. (2023) utilized Se-
qRep (Welleck et al., 2019; Fu et al., 2021; Li
et al., 2023a) as a means to gauge lexical (n-gram)
diversity, hence, we also implement this scoring
function. We report unigram, bigram, trigram, and
four-gram repetition (or otherwise, SeqRep1-4).

Why this function is unstable is fairly interesting:
it tends to be stable with repetitive text, yet tends to
be unstable when a model’s outputs are sufficiently
diverse, to the point of the ground truth/uncorrupted
prefixes often appearing higher. While this could
be due to the setup of our evaluation (i.e. it would
make sense an artificially corrupted/diverse prefix
may lead to artificial diversity), we still keep it to
study if repetition can be a factor in exposure bias,
specifically in Appendix B.

7https://platform.openai.com/docs/deprecations/instructgpt-
models
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D.2 Modified Exposure Bias and Self
Recovery Metrics

The issue with the current definitions given in
Section 3 is that some metrics do not necessarily
conform to them. In particular, we denoted such
changes by each metric having a subscript named
"alt"(short for alternative), appended to the label.
For instance, a modified EB-M is called EB-Malt.

Alternate EB-M Definitions For Perplexity and
SeqRep Perplexity and SeqRep(1-4) (Welleck
et al., 2019; Fu et al., 2021; Li et al., 2023a)
are scoring functions that do not require labels
(P

Wl+1:l+lgen
D ) for scoring, as they only score the

generation (P
Wl+1:l+lgen

M |D ) in terms of quality and
diversity respectively. Hence, the alternate EB-M
definition for the aforementioned scoring functions
is as follows:

EB-Malt(M, l, fscore) =
fscore(P

Wl+1:l+lgen
M|D )

fscore(P
Wl+1:l+lgen
M|M )

. (11)

Alternative EB-C Metric Definition for
RankGen RankGen (Krishna et al., 2022)
instead of scoring the consistency between a
generation (PM · |C,W1:l) and its corresponding
label (PD(·|C,W1:l)) score the consistency be-
tween the generation and its corresponding prompt.
Specifically, the context of a generation is its fixed
prompt combined with its prefix, (PD(C,W1:l)).
Hence, the modified EB-C definition for RankGen
is as follows:

CGDalt(M |H(l), fdiv) =

E
C∼PD,W1:l∼PH (·|C)

[fdiv(PM (·|C,W1:l), PD(C))]. (12)

Where the modified CGD is part of the following
equation:

EB-Calt(M, l, fdiv) =
CGDalt(M |M(l),fdiv)
CGDalt(M |D(l),fdiv)

. (13)

It should be noted that the labels are larger than
the generation(in our work, this is a ratio of 20:1
tokens). However as RankGen uses embeddings,
the dimensions of the encoded labels and inputs
will be the same (from the embedding dimension).
Hence, the mismatch is a non-issue for RankGen.

Alternate EB-Mgap Definitions For Perplexity
and SeqRep1 Similar to their behavior in EB-
M, Perplexity, and SeqRep1 largely do not require

scoring labels. The alternative definition of EB-M
gap is as follows for these scoring functions:

EB-Mgapalt(M(lgap)|Dcorrupt(l), fscore) =

fscore(P
Wl′+1:l′+lgen

M |D(l′) )

fscore(P
Wl′+1:l′+lgen

M |Dcorrupt(l)
)

(14)

Alternative EB-Cgap Metric Definition for
RankGen Similar to its behavior in EB-C,
RankGen utilizes associated prompts instead of
associated labels. Hence, the altered definition is
as follows:

CGDgapalt(M(lgap)|Dcorrupt(l)) =

E
W

corrupt
1:l

∼P
corrupt
D

,Wl+1:l+lgap∼PM (·|W corrupt
1:l

),C∼PD

[fdiv(PM (·|W corrupt
1:l ,Wl+1:l+lgap), PD(C)],

(15)

Likewise, it follows that the definition of EB-C
gapalt is altered from EB-Cgapalt:

EB-Cgapalt(M(lgap)|Dcorrupt(l), fdiv) =

CGDgap(M(lgap)|Dcorrupt(l),fdiv)

CGD(M|D(l+lgap),fdiv)
.

(16)
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D.3 GPT-2 Results
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Figure 4: EBM/EBC Ratios for several GPT-2 configurations detailing the disparities in quality, diversity, and
consistency (measured via various scoring/divergence functions) between generated text conditioned on model
and ground truth prefixes of increasing size. A ratio farther from 1 indicates more discrepancy, i.e. exposure
bias, regardless of the exact ratio value, except for functions demarcated by * (See Appendix D.1). In theory,
the kNN-LM variant should see increased exposure bias compared to their standard LM counterparts among all
functions. Yet in practice, they typically exhibit equal or lower levels of exposure bias.
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Figure 5: EBC/EBM (GAP) ratios for various GPT-2 configurations which measure disparities in quality, diversity,
and consistency (via various scoring and divergence functions) between text generated with a ground truth prefix
and its 30% corrupted version. As the model prefix size (gap) increases, the model should in theory self-recover, by
moving the ratio closer to 1, regardless of the exact value, except for functions demarcated by * (see Appendix
D.1). However, in practice, no configuration consistently achieves this, and the kNN-LM configuration generally
performs similarly to the standard configuration.

20



D.4 Transformer-XL Results
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Figure 6: EBM/EBC Ratios for several Transformer-XL configurations detailing the disparities in quality, diversity,
and consistency (measured via various scoring/divergence functions) between generated text conditioned on model
and ground truth prefixes of increasing size. This includes an additional configuration with an alternate choice
for the kNN-LM interpolation weight hyperparameter. A ratio farther from 1 indicates more discrepancy, i.e.
exposure bias, regardless of the exact ratio value, except for functions demarcated by * (See Appendix D.1). In
theory, all of the kNN-LM variants should see increased exposure bias compared to their standard LM counterparts
among all functions. Yet in practice, they typically exhibit equal or lower levels of exposure bias.
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Figure 7: EBC/EBM (GAP) ratios for various Transformer-XL configurations which measure disparities in quality,
diversity, and consistency (via various scoring and divergence functions) between text generated with a ground
truth prefix and its 30% corrupted version. As the model prefix size (gap) increases, the model should in theory
self-recover, by moving the ratio closer to 1, regardless of the exact value, except for functions demarcated
by * (see Appendix D.1). However, in practice, no configuration consistently achieves this, and the kNN-LM
configurations generally perform similarly to the standard configuration.
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D.5 Llama 3 Results
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Figure 8: EBM/EBC Ratios for several Llama 3 configurations detailing the disparities in quality, diversity, and
consistency (measured via various scoring/divergence functions) between generated text conditioned on model and
ground truth prefixes of increasing size. Additional configurations include an alternate choice for the kNN-LM
interpolation weight hyperparameter or an extended datastore. A ratio farther from 1 indicates more discrepancy,
i.e. exposure bias, regardless of the exact ratio value, except for functions demarcated by * (See Appendix D.1). In
theory, all of the kNN-LM variants should see increased exposure bias compared to their standard LM counterparts
among all functions. Yet in practice, they generally exhibit equal or lower levels of exposure bias, with the key
exception of the configuration of llama3+knnlm.
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Figure 9: EBC/EBM (GAP) ratios for various Llama 3 configurations which measure disparities in quality, diversity,
and consistency (via various scoring and divergence functions) between text generated with a ground truth prefix
and its 30% corrupted version. As the model prefix size (gap) increases, the model should in theory self-recover, by
moving the ratio closer to 1, regardless of the exact value, except for functions demarcated by * (see Appendix
D.1). However, in practice, no configuration consistently achieves this, and the kNN-LM configurations generally
perform similarly to the standard configuration among all functions except the configuration of llama3+knnlm.
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E Implementation Details

This section covers the implementation details con-
cerning text generation, the datastore/dataset, and
scoring/divergence functions. At the highest level,
this project uses Alon et al. (2022)’s implemen-
tation of kNN-LM8. This also includes the fine-
tuned variants of the 117M parameter GPT-2 LM9

(Radford et al., 2019; Alon et al., 2022) used in
our evaluations, and its corresponding datastore10.
Similarly, for Llama 3 (Dubey et al., 2024), we
use the extended datastore11 available from Shi
et al. (2022); Geng et al. (2024). Our primary dif-
ference is that rather using the faiss-gpu library,
we instead use the faiss-cpu==1.8.0 library for
evaluation. This is due to all variants of MAUVE
(Pillutla et al., 2021; Liu et al., 2021; Pillutla et al.,
2023) requiring the use of faiss-cpu. The pri-
mary libraries used by the implementation are
transformers==4.44.2 accelerate==0.30.1,
evaluate==0.4.1, datasets==2.19.0. Ad-
ditionally, we set the probe parameter to
1, for evaluation speed (at the expense of
some accuracy in kNN search). However, it
should be noted that Meta-Llama-3-8B requires
sentencepiece==0.2.0 for its tokenizer, and sim-
ilarly, transfo-xl/transfo-xl-wt103 requires
the sacremoses==0.1.1 dependency for its tok-
enizer. For many of the dependencies we did not
list, we do so under specific scoring/divergence
functions in this section. We additionally note that
every model, metric, and dataset is primarily built
for English language modeling.

E.1 Dataset Information
Wikitext-103 (Merity et al., 2016) is a language
modeling dataset released by Salesforce containing
"Good and Certified" Wikipedia articles in the En-
glish language. It contains approximately 100 mil-
lion tokens. Note that we use the raw token level
wikitext-103-raw-v1 version of the Wikitext-
103 dataset, following Alon et al. (2022)’s imple-
mentation.

8https://github.com/neulab/knn-transformers
9https://huggingface.co/neulab/gpt2-finetuned-

wikitext103
10We use all the files under the ”gpt-2” directory in

https://knn-transformers.s3.amazonaws.com/index.html
11https://huggingface.co/datasets/wentingzhao/knn-

prompt-datastore

E.2 Text Generation Information
As text generation was the foundational build-
ing block of our evaluation, we list its related
settings here. In particular, we use hug-
gingface transformer’s model.generate()
function to generate text, where model is one
of our evaluated LMs (e.g. GPT-2) loaded via
AutoModelForCausalLM.from_pretrained().
Our parameters common to all decoding methods
are as follows:

• max_new_tokens = num_generations

• min_new_tokens = num_generations

• pad_token_id = 50256

This allows us to have an exact amount of gen-
erations, in this work, we use 20. 50256 is the
<|endoftext|> for GPT-2, and we use this largely as
a dummy value for padding (which is somewhat re-
dundant as all input values are the same length and
hence this only exists to dismiss a warning regard-
ing a missing pad token). We use do_sample =
True for nucleus sampling (Holtzman et al., 2019)
top-k sampling(Fan et al., 2018; Holtzman et al.,
2018; Radford et al., 2019), and ancestral sampling
to stochastically sample. We set this parameter to
false for greedy decoding. Generally, then the hy-
perparameters would be straightforward: top-k is
set to 40 following Wang et al. (2023) and ances-
tral sampling requires no extra hyperparameters.
The exception is nucleus sampling as by default,
top-k is utilized with nucleus sampling. Hence, we
explicitly call the following parameters to invoke
nucleus sampling without top-k sampling: top_p
= 0.8, top_k = 0. We follow this according
to the official huggingface transformers generation
guide12. Note that this is not an issue for greedy
decoding, as it does not invoke stochastic sampling.

E.3 Scoring and Divergence Functions
In this section, we list extra implementation details
regarding scoring and divergence functions. Pri-
marily, we do not reintroduce information already
found in 4.4 such as model sizes. Additionally,
any settings that are set to their defaults are not
mentioned here, as well as details on batching. In
general, most metrics here were batched, and we
take the mean of said batches. While we believe
there will be some variation as truncated sampling

12https://huggingface.co/blog/how-to-generate#top-p-
nucleus-sampling
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methods like nucleus sampling are stochastic, we
do not foresee major differences in our results.

GPT-2 Perplexity We use huggingface’s
evaluate==0.4.1 to score perplexity13, reporting
the mean perplexities of the samples evaluated.
We use the 774M gpt2-large parameter GPT-2
Large to calculate the mean perplexities.

SeqRep1-4 We calculate the SeqRep1-4(Welleck
et al., 2019; Fu et al., 2021; Li et al., 2023a) from
Li et al. (2023a)’s implementation14. Prior to doing
so we modify it such that ngramlist also returns
the unigram repetition, or otherwise, SepReq1.
SeqRep1-4 requires the dependency nltk==3.8.1.

BERTScore We utilize the huggingface eval-
uate version of BERTScore (Zhang et al.,
2019)15, which requires the dependency
bert-score==0.3.13 and evaluate==0.4.1.

EntityF1 We implemented EntityF1 (Derczyn-
ski, 2016; Lee et al., 2022) by utilizing the
spacy==3.7.4 library in conjunction with the
125M parameter en_core_web_trf16 model for
Named Entity Recognition. As we specifically de-
sign EntityF1 to ignore repetition and consider the
entity overlaps between all of the predictions(i.e.
LM generated text) and labels, we utilize Python
sets and intersections to calculate the true posi-
tives, false positives, and false negatives. For exam-
ple, the number of true positives would be con-
sidered the len of the list of elements in the
intersection between the set of entities in the
prediction text and set of entities in the label text.

RankGen To our knowledge Wang et al. (2023)’s
work has no public implementation of how they
utilized RankGen (Krishna et al., 2022). Hence,
we adapted a version as to what we thought was
the most accurate implementation for use in scor-
ing. We utilized the RankGEN repository17 such
that the RankGenEncoder and RankGenGenerator
classes are used to encode and score generations
based on their similarity to their prefixes. Addi-
tionally, because RankGen utilizes the dot product,
we take the diagonal of the results to avoid scor-
ing similarities between predictions and labels not

13https://huggingface.co/spaces/evaluate-
metric/perplexity

14https://github.com/gmftbyGMFTBY/Rep-
Dropout/blob/main/repetition_dropout/utils/evaluation.py#L53

15https://huggingface.co/spaces/evaluate-metric/bertscore
16https://huggingface.co/spacy/en_core_web_trf
17https://github.com/martiansideofthemoon/rankgen

within their respective pairs. To do so, we fol-
low similarly in the official tutorial 18 up until the
generator variable is defined. Aftward, we manu-
ally call the RankGenGenerator.rankgenscorer
function, and take the .diagonal() of the first re-
turned value, which we consider to be the RankGen
score.

GTE Similarity We follow the instructions
from the official model card of the 434M
Alibaba-NLP/gte-large-en-v1.5 (Li et al.,
2023b) 19 embedding model to encode tokens. Our
main difference is how we extract the embeddings:
rather than computing the cosine similarity score
between all labels and generations, we compute
their corresponding cosine similarity scores indi-
vidually and then average them in aggregate. We
do so to remove unnecessary pairs, similar to the
process followed in RankGen. To calculate the co-
sine similarity between generation-label pairs, we
utilize Pytorch’s CosineSimilarity class20. We
note the primary addition with this class is a ϵ,
which is a small value meant to prevent division by
0. We use the default value of 1e-8.

MAUVE & Variants We primarily utilize a fork
of MAUVE (Pillutla et al., 2021; Liu et al., 2021;
Pillutla et al., 2023)21, as the original forbids any
models that do not have gpt or bert in their title22

to be used. This rule makes it impossible to calcu-
late ELECTRA-MAUVE (Clark et al., 2020; He
et al., 2023). We used the aforementioned fork as
it removed this limitation. Regarding hyperparam-
eters, we keep every parameter at their defaults ex-
cept for kmeans_num_redo, which we lower from
5 to 1. This is because MAUVE took the longest to
calculate out of any divergence score, as it utilizes
k-means clustering in its calculation, and we used
this as a means for quicker evaluation. We gen-
erally saw the difference in scores was negligible
and opted for this difference in hyperparameters in
return for a quicker evaluation. MAUVE requires
the dependency scikit_learn==1.4.2 for its k-
means clustering calculations.

18https://github.com/martiansideofthemoon/rankgen?tab=readme-
ov-file#using-rankgen

19Alibaba-NLP/gte-large-en-v1.5
20https://pytorch.org/docs/stable/generated/torch.nn.CosineSimilarity.html
21https://github.com/jackjyzhang/mauve
22https://github.com/krishnap25/mauve/blob/main/src/mauve/utils.py#L27
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